domingo, 10 de mayo de 2015

ESTADISTICA

http://www.monografias.com/trabajos15/estadistica/estadistica.shtml 
Estadística:
La estadística es comúnmente considerada como una colección de hechos numéricos expresados en términos de una relación sumisa, y que han sido recopilado a partir de otros datos numéricos.
Kendall y Buckland (citados por Gini V. Glas / Julian C. Stanley, 1980) definen la estadística como un valor resumido, calculado, como base en una muestra de observaciones que generalmente, aunque no por necesidad, se considera como una estimación de parámetro de determinada población; es decir, una función de valores de muestra.
"La estadística es una técnica especial apta para el estudio cuantitativo de los fenómenos de masa o colectivo, cuya mediación requiere una masa de observaciones de otros fenómenos más simples llamados individuales o particulares". (Gini, 1953.
Murria R. Spiegel, (1991) dice: "La estadística estudia los métodos científicos para recoger, organizar, resumir y analizar datos, así como para sacar conclusiones válidas y tomar decisiones razonables basadas en tal análisis.
"La estadística es la ciencia que trata de la recolección, clasificación y presentación de los hechos sujetos a una apreciación numérica como base a la explicación, descripción y comparación de los fenómenos". (Yale y Kendal, 1954).
Cualquiera sea el punto de vista, lo fundamental es la importancia científica que tiene la estadística, debido al gran campo de aplicación que posee.
 
Población:
El concepto de población en estadística va más allá de lo que comúnmente se conoce como tal. Una población se precisa como un conjunto finito o infinito de personas u objetos que presentan características comunes.
"Una población es un conjunto de todos los elementos que estamos estudiando, acerca de los cuales intentamos sacar conclusiones". Levin & Rubin (1996).
"Una población es un conjunto de elementos que presentan una característica común". Cadenas (1974).
Ejemplo:
Los miembros del Colegio de Ingenieros del Estado Cojedes.
El tamaño que tiene una población es un factor de suma importancia en el proceso de investigación estadística, y este tamaño vienen dado por el número de elementos que constituyen la población, según el número de elementos la población puede ser finita o infinita. Cuando el número de elementos que integra la población es muy grande, se puede considerar a esta como una población infinita, por ejemplo; el conjunto de todos los números positivos. Una población finita es aquella que está formada por un limitado número de elementos, por ejemplo; el número de estudiante del Núcleo San Carlos de la Universidad Nacional Experimental Simón Rodríguez.
Cuando la población es muy grande, es obvio que la observación de todos los elementos se dificulte en cuanto al trabajo, tiempo y costos necesario para hacerlo. Para solucionar este inconveniente se utiliza una muestra estadística.
Es a menudo imposible o poco práctico observar la totalidad de los individuos, sobre todos si estos son muchos. En lugar de examinar el grupo entero llamado población o universo, se examina una pequeña parte del grupo llamada muestra.
 
Muestra:
"Se llama muestra a una parte de la población a estudiar que sirve para representarla". Murria R. Spiegel (1991).
"Una muestra es una colección de algunos elementos de la población, pero no de todos". Levin & Rubin (1996).
"Una muestra debe ser definida en base de la población determinada, y las conclusiones que se obtengan de dicha muestra solo podrán referirse a la población en referencia", Cadenas (1974).
Ejemplo;
El estudio realizado a 50 miembros del Colegio de Ingenieros del Estado Cojedes.
El estudio de muestras es más sencillo que el estudio de la población completa; cuesta menos y lleva menos tiempo. Por último se aprobado que el examen de una población entera todavía permite la aceptación de elementos defectuosos, por tanto, en algunos casos, el muestreo puede elevar el nivel de calidad.
Una muestra representativa contiene las características relevantes de la población en las mismas proporciones que están incluidas en tal población.
Los expertos en estadística recogen datos de una muestra. Utilizan esta información para hacer referencias sobre la población que está representada por la muestra. En consecuencia muestra y población son conceptos relativos. Una población es un todo y una muestra es una fracción o segmento de ese todo.
 
Muestreo:
Esto no es más que el procedimiento empleado para obtener una o más muestras de una población; el muestreo es una técnica que sirve para obtener una o más muestras de población.
Este se realiza una vez que se ha establecido un marco muestral representativo de la población, se procede a la selección de los elementos de la muestra aunque hay muchos diseños de la muestra.
Al tomar varias muestras de una población, las estadísticas que calculamos para cada muestra no necesariamente serían iguales, y lo más probable es que variaran de una muestra a otra.
Ejemplo;
Consideremos como una población a los estudiantes de educación del Núcleo San Carlos de la UNESR, determinando por lo menos dos caracteres ser estudiados en dicha población;
  • Religión de los estudiantes
  • Sexo.
Tipos de muestreo
Existen dos métodos para seleccionar muestras de poblaciones; el muestreo no aleatorio o de juicio y el muestreo aleatorio o de probabilidad. En este último todos los elementos de la población tienen la oportunidad de ser escogidos en la muestra. Una muestra seleccionada por muestreo de juicio se basa en la experiencia de alguien con la población. Algunas veces una muestra de juicio se usa como guía o muestra tentativa para decidir como tomar una muestra aleatoria más adelante. Las muestras de juicio evitan el análisis estadístico necesarios para hacer muestras de probabilidad.

Variables y Atributos:
Las variables, también suelen ser llamados caracteres cuantitativos, son aquellos que pueden ser expresados mediante números. Son caracteres susceptibles de medición. Como por ejemplo, la estatura, el peso, el salario, la edad, etc.
Según, Murray R. Spiegel, (1992) "una variable es un símbolo, tal como X, Y, Hx, que puede tomar un valor cualquiera de un conjunto determinado de ellos, llamado dominio de la variable. Si la variable puede tomar solamente un valor, se llama constante."
Todos los elementos de la población poseen los mismos tipos de caracteres, pero como estos en general no suelen representarse con la misma intensidad, es obvio que las variables toman distintos valores. Por lo tanto estos distintos números o medidas que toman los caracteres son los "valores de la variable". Todos ellos juntos constituyen una variable.
Los atributos también llamados caracteres cualitativos, son aquellos que no son susceptibles de medición, es decir que no se pueden expresar mediante un número.
IUTIN (1997). "Reciben el nombre de variables cualitativas o atributos, aquellas características que pueden presentarse en individuos que constituyen un conjunto.
La forma de expresar los atributos es mediante palabras, por ejemplo; profesión, estado civil, sexo, nacionalidad, etc. Puede notar que los atributos no se presentan en la misma forma en todos los elementos. Estas distintas formas en que se presentan los atributos reciben el nombre de "modalidades".
Ejemplo;
El estado civil de cada uno de los estudiantes del curso de estadísticas I, no se presenta en la misma modalidad en todos.
Formas de Observar la Población:
  1. Atendiendo a la fuente se clasifican en directa o indirecta.
  • Observación directa: es aquella donde se tienen un contacto directo con los elementos o caracteres en los cuales se presenta el fenómeno que se pretende investigar, y los resultados obtenidos se consideran datos estadísticos originales. Para Ernesto Rivas González (1997) "Investigación directa, es aquella en que el investigador observa directamente los casos o individuos en los cuales se produce el fenómeno, entrando en contacto con ellos; sus resultados se consideran datos estadísticos originales, por esto se llama también a esta investigación primaria".
Ejemplo; el seguimiento de la población agrícola por año, llevado en una determinada granja.
  • Observación Indirecta: es aquella donde la persona que investiga hace uso de datos estadísticos ya conocidos en una investigación anterior, o de datos observados por un tercero (persona o entidad). Con el fin de deducir otros hechos o fenómenos.
Ejemplo; si un investigador pretende estudiar la producción por años de una granja avícola, en sus últimos cinco años de producción, tendría que hacer un seguimiento, a tal fin recurriría a las observaciones que posee la oficina administrativa de la granja durante estos cinco años, o dirigirse a la oficina de estadística, llevada en el ministerio de producción y comercio (M.P.C) de la localidad donde está registrada dicha granja. Es de notar que el investigador se vale de observaciones realizadas por terceros.
  1. Atendiendo a la periodicidad, puede ser continua, periódica o circunstancial.
  • Una observación continua; como su nombre lo indica es aquella que se lleva acabo de un modo permanente.
Ejemplo: la contabilidad comercial, llevada en cuanto a compras, ventas y otras operaciones que se van registrando a medida que van produciéndose.
  • Una observación periódica; es aquélla que se lleva a cabo a través de períodos de tiempo constantes. Estos períodos de tiempos pueden ser semanas, trimestres, semestres, años, etc. Lo que debemos destacar es que los períodos de tiempo tomados como unidad deben tomarse constantes en los posible.
Ejemplo; el registro llevado por la Oficinas de Control de Estudios de la UNESR, en cuanto a la inscripción de los estudiantes por semestre.
  • La observación circunstancial, es aquella que se efectúa en forma ocasional o esporádica, esta observación hecha más por una necesidad momentánea, que de carácter regular o permanente.
Ejemplo; la obtención de números de aulas utilizadas y no utilizadas en los colegios pertenecientes al municipio San Carlos del Estado Cojedes.
  1. Atendiendo a la cobertura; pueden ser exhaustiva, parcial o mixta
  • Observación Exhaustiva. Cuando la observación es efectuada sobre la totalidad de los elementos de la población se habla de una observación exhaustiva.
  • Observación Parcial. Dados que las poblaciones en general son grandes, la observación de todos sus elementos se ve imposibilitada. La solución para superar este inconveniente es observar una parte de esta población.
  • Observación Mixta. En este tipo de observación se combinan adecuadamente la observación exhaustiva con la observación parcial. Por lo general, este tipo de observaciones se lleva a cabo de tal manera que los caracteres que se consideran básicos se observan exhaustivamente y los otros mediante una muestra; o bien cuando la población es muy grande, parte de ella se observa parcialmente.
Censo:
Se entiende por censo aquella numeración que se efectúa a todos y cada uno de los caracteres componentes de una población.
Para Levin & Rubin (1996) "Algunas veces es posible y práctico examinar a cada persona o elemento de la población que deseamos describir. A esto lo llamamos una numeración completa o censo. Utilizamos el muestre cuando no es posible contar o medir todos los elementos de la población.
Si es posible listar (o enumerar) y observar cada elemento de la población, los censos se utilizan rara vez porque a menudo su compilación es bastante difícil, consume mucho tiempo por lo que resulta demasiado costoso.
Encuesta:
Se entiende por encuesta las observaciones realizadas por muestreo, es decir son observaciones parciales.
El diseño de encuestas es exclusivo de las ciencias sociales y parte de la premisa de que si queremos conocer algo sobre el comportamiento de las personas, lo mejor, más directo y simple es preguntárselo directamente a ellas. (Cadenas, 1974).
Según Antonio Napolitano "La encuesta, es un método mediante el cual se quiere averiguar. Se efectúa a través de cuestionarios verbales o escritos que son aplicados a un gran número de personas".
Estadística Descriptiva:
Tienen por objeto fundamental describir y analizar las características de un conjunto de datos, obteniéndose de esa manera conclusiones sobre las características de dicho conjunto y sobre las relaciones existentes con otras poblaciones, a fin de compararlas. No obstante puede no solo referirse a la observación de todos los elementos de una población (observación exhaustiva) sino también a la descripción de los elementos de una muestra (observación parcial).
En relación a la estadística descriptiva, Ernesto Rivas Gonzáles dice; "Para el estudio de estas muestras, la estadística descriptiva nos provee de todos sus medidas; medidas que cuando quieran ser aplicadas al universo total, no tendrán la misma exactitud que tienen para la muestra, es decir al estimarse para el universo vendrá dada con cierto margen de error; esto significa que el valor de la medida calculada para la muestra, en el oscilará dentro de cierto límite de confianza, que casi siempre es de un 95 a 99% de los casos.
Estadística Inductiva:
Está fundamentada en los resultados obtenidos del análisis de una muestra de población, con el fin de inducir o inferir el comportamiento o característica de la población, de donde procede, por lo que recibe también el nombre de Inferencia estadística.
Según Berenson y Levine; Estadística Inferencial son procedimientos estadísticos que sirven para deducir o inferir algo acerca de un conjunto de datos numéricos (población), seleccionando un grupo menor de ellos (muestra).
El objetivo de la inferencia en investigación científica y tecnológica radica en conocer clases numerosas de objetos, personas o eventos a partir de otras relativamente pequeñas compuestas por los mismos elementos.
En relación a la estadística descriptiva y la inferencial, Levin & Rubin (1996) citan los siguientes ejemplos para ayudar a entender la diferencia entre las dos.
Supóngase que un profesor calcula la calificación promedio de un grupo de historia. Como la estadística describe el desempeño del grupo pero no hace ninguna generalización acerca de los diferentes grupos, podemos decir que el profesor está utilizando estadística descriptiva. Graficas, tablas y diagramas que muestran los datos de manera que sea más fácil su entendimiento son ejemplos de estadística descriptiva.
Supóngase ahora que el profesor de historia decide utilizar el promedio de calificaciones obtenidos por uno de sus grupos para estimar la calificación promedio de las diez unidades del mismo curso de historia. El proceso de estimación de tal promedio sería un problema concerniente a la estadística inferencial.
Los estadísticos se refieren a esta rama como inferencia estadística, esta implica generalizaciones y afirmaciones con respecto a la probabilidad de su validez.

Resultado de imagen para ESTADISTICA
Medición de Caracteres
Medición
Existen diversas definiciones del termino "medición", pero estas dependen de los diferentes puntos de vista que se puedan tener al abordar el problema de la cuantificación y el proceso mismo de la construcción de una escala o instrumento de medición.
En general, se entiende por medición la asignación de números a elementos u objetos para representar o cuantificar una propiedad. El problema básico está dado por la asignación un numeral que represente la magnitud de la característica que queremos medir y que dicho números pueden analizarse por manipulaciones de acuerdo a ciertas reglas. Por medio de la medición, los atributos de nuestras percepciones se transforman en entidades conocidas y manejables llamadas "números". Es evidente que el mundo resultaría caótico si no pudiéramos medir nada. En este caso cabría preguntarse de que le serviría la físico saber que el hierro tiene una alta temperatura de fusión.
Niveles o Escalas de mediciones
Escala Nominal:
La escala de medida nominal, puede considerarse la escala de nivel más bajo, y consiste en la asignación, puramente arbitraria de números o símbolos a cada una de las diferentes categorías en las cuales podemos dividir el carácter que observamos, sin que puedan establecerse relaciones entre dichas categorías, a no ser el de que cada elemento pueda pertenecer a una y solo una de estas categorías.
Se trata de agrupar objetos en clases, de modo que todos los que pertenezcan a la misma sean equivalentes respecto del atributo o propiedad en estudio, después de lo cual se asignan nombres a tales clases, y el hecho de que a veces, en lugar de denominaciones, se le atribuyan números, puede ser una de las razones por las cuales se le conoce como "medidas nominales".
Por ejemplo, podemos estar interesados en clasificar los estudiantes de la UNESR Núcleo San Carlos de acuerdos a la carrera que cursan.
Carrera
Número asignada a la categoría
Educación
1
Administración
2

Se ha de tener presente que los números asignados a cada categoría sirven única y exclusivamente par identificar la categoría y no poseen propiedades cuantitativas.
Escala Ordinal:
En caso de que puedan detectarse diversos grados de un atributo o propiedad de un objeto, la medida ordinal es la indicada, puesto que entonces puede recurrirse a la propiedad de "orden" de los números asignándolo a los objetos en estudio de modo que, si la cifra asignada al objeto A es mayor que la de B, puede inferirse que A posee un mayor grado de atributo que B.
La asignación de números a las distintas categorías no puede ser completamente arbitraria, debe hacerse atendiendo al orden existente entre éstas.
Los caracteres que posee una escala de medida ordinal permiten, por el hecho mismo de poder ordenar todas sus categorías, el cálculo de las medidas estadísticas de posición, como por ejemplo la mediana.
Ejemplo:
Al asignar un número a los pacientes de una consulta médica, según el orden de llegada, estamos llevando una escala ordinal, es decir que al primero en llegar ordinal, es decir que al primeo en llegar le asignamos el nº 1, al siguiente el nº 2 y así sucesivamente, de esta forma, cada número representará una categoría en general, con un solo elemento y se puede establecer relaciones entre ellas, ya que los números asignados guardan la misma relación que el orden de llegada a la consulta.
Escalas de intervalos iguales:
la escala de intervalos iguales, está caracterizada por una unidad de medida común y constante que asigna un número igual al número de unidades equivalentes a la de la magnitud que posea el elemento observado. Es importante destacar que el punto cero en las escalas de intervalos iguales es arbitrario, y no refleja en ningún momento ausencia de la magnitud que estamos midiendo. Esta escala, además de poseer las características de la escala ordinal, encontramos que la asignación de los números a los elemento es tan precisa que podemos determinar la magnitud de los intervalos (distancia) entre todos los elementos de la escala. Sin lugar a dudas, podemos decir que la escala de intervalos es la primera escala verdaderamente cuantitativa y a los caracteres que posean esta escala de medida pueden calculársele todas las medidas estadísticas a excepción del coeficiente de variación.
Ejemplo:
El lapso transcurrido entre 1998-1999 es igual al que transcurrió entre 2000-2001.
Escala de coeficientes o Razones:
El nivel de medida más elevado es el de cocientes o razones, y se diferencia de las escalas de intervalos iguales únicamente por poseer un punto cero propio como origen; es decir que el valor cero de esta escala significa ausencia de la magnitud que estamos midiendo. Si se observa una carencia total de propiedad, se dispone de una unidad de medida para el efecto. A iguales diferencias entre los números asignados corresponden iguales diferencias en el grado de atributo presente en el objeto de estudio. Además, siendo que cero ya no es arbitrario, sino un valor absoluto, podemos decir que A. Tiene dos, tres o cuatro veces la magnitud de la propiedad presente en B.
Ejemplo:
En una encuesta realizada en un barrio de esta localidad se observó que hay familias que no tienen hijos, otras tienen 6 hijos que es exactamente el doble de hijos que aquellas que tienen 3 hijos.
Las variables y su medición:
Una variable es un símbolo, tal como X, Y, H, x ó B, que pueden tomar un conjunto prefijado de valores, llamado dominio de esa variable. Para Murray R. Spiegel (1991) "una variable que puede tomar cualquier valor entre dos valores dados se dice que es una variable continua en caso contrario diremos que la variable es discreta".
Las variables, también llamadas caracteres cuantitativos, son aquellas cuyas variaciones son susceptibles de ser medidas cuantitativamente, es decir, que pueden expresar numéricamente la magnitud de dichas variaciones. Por intuición y por experiencia sabemos que pueden distinguirse dos tipos de variables; las continuas y las discretas
 
Las variables continuas se caracterizan por el hecho de que para todo para de valores siempre se puede encontrar en valor intermedio, (el peso, la estatura, el tiempo empleado para realizar un trabajo, etc.)
Una variable es continua, cuando puede tomar infinitos valores intermedios dentro de dos valores consecutivos. Por ejemplo, la estatura, el peso, la temperatura.
 Para ver el gráfico seleccione la opción "Descargar" del menú superior
Ejemplo:
En el preescolar Blanca de Pérez, ubicado en la urbanización Monseñor Padilla de esta ciudad se procedió a recoger las medidas de talla y peso de los niños que a este asisten.
Niño Peso Talla
José 18,300 1,15
Julio 20,500 1,20
Pedro 19,000 1,10
Luis 18,750 1,18
.Las variables discretas serán aquellas que pueden tomar solo un número limitado de valores separados y no continuos; son aquellas que solo toman un determinado números de valores, porque entre dos valores consecutivos no pueden tomar ningún otro; por ejemplo el número de estudiantes de una clase es una variable discreta ya que solo tomará los valores 1, 2, 3, 4... nótese que no encontramos valor como 1,5 estudiantes

Estadísticas Primarias
Datos Estadísticos:
Los datos estadísticos no son otra cosa que el producto de las observaciones efectuadas en las personas y objetos en los cuales se produce el fenómeno que queremos estudiar. Dicho en otras palabras, son los antecedentes (en cifras) necesarios para llegar al conocimiento de un hecho o para reducir las consecuencias de este.
Los datos estadísticos se pueden encontrar de forma no ordenada, por lo que es muy difícil en general, obtener conclusiones de los datos presentados de esta manera. Para poder obtener una precisa y rápida información con propósitos de descripción o análisis, estos deben organizarse de una manera sistemática; es decir, se requiere que los datos sean clasificados. Esta clasificación u organización puede muy bien hacerse antes de la recopilación de los datos.
Ejemplo:
Si se quiere conocer las características de los estudiantes del Núcleo San Carlos de la UNESR, que solicitan préstamo a la biblioteca de dicha Universidad, la recolección de la información debe clasificar a cada estudiante sobre la base de: Carrera que estudia, edad, semestre de estudios, etc. Vemos pues que la clasificación marca la pauta de la clase de datos que debe ser obtenido.
Clasificación de los datos
Los datos estadísticos pueden ser clasificados en cualitativos, cuantitativos, cronológicos y geográficos.
Datos Cualitativos: cuando los datos son cuantitativos, la diferencia entre ellos es de clase y no de cantidad.
Ejemplo:
Si deseamos clasificar los estudiantes que cursan la materia de estadística I por su estado civil, observamos que pueden existir solteros, casados, divorciados, viudos.
Datos cuantitativos: cuando los valores de los datos representan diferentes magnitudes, decimos que son datos cuantitativos.
Ejemplo:
Se clasifican los estudiantes del Núcleo San Carlos de la UNESR de acuerdo a sus notas, observamos que los valores (nota) representan diferentes magnitudes.
Datos cronológicos: cuando los valores de los datos varían en diferentes instantes o períodos de tiempo, los datos son reconocidos como cronológicos.
Ejemplo:
Al registrar los promedios de notas de los Alumnos del Núcleo San Carlos de la UNESR en los diferentes semestres.
Datos geográficos: cuando los datos están referidos a una localidad geográfica se dicen que son datos geográficos.
Ejemplo
El número de estudiantes de educación superior en las distintas regiones del país.
Fuentes de datos Estadísticos:
Los datos estadísticos necesarios para la comprensión de los hechos pueden obtenerse a través de fuentes primarias y fuentes secundarias.
Fuentes de datos primarias: es la persona o institución que ha recolectado directamente los datos.
Fuentes secundarias: son las publicaciones y trabajos hechos por personas o entidades que no han recolectado directamente la información.
Las fuentes primarias más confiables, son las efectuadas por oficinas gubernamentales encargadas de tal fin.
En la práctica, es aconsejable utilizar fuentes de datos primarias y en última instancia cuando estas no existan, usar estadísticas de fuentes secundarias. Con este último tipo no debemos pasar por alto que la calidad de las conclusiones estadísticas dependen en grado sumo de la exactitud de los datos que se recaben. De anda serviría usar técnicas estadísticas precisas y refinadas para llegar a conclusiones valederas, si estas técnicas no son aplicadas a datos adecuados o confiables.
Cuando un investigador quiere obtener datos estadísticos relativo a un estudio que desea efectuar, puede elegir entre una fuente primaria o en su defecto, una secundaria. O recopilar los datos por sí mismo. La posibilidad mencionada en último termino podrá deberse bien a la inexistencia de los datos o bien a que esto no se encuentran discriminados en la forma requerida.
Ejemplo:
Si un investigador quiere conocer el número de alumnos repitientes en educación media, clasificados por ciclos, para los últimos diez años, el investigador puede usar una fuente primaria, tal como la memoria y cuenta el Ministerio de Educación cada año.

Método para la recolección de datos:
En estadística se emplean una variedad de métodos distintos para obtener información de los que se desea investigar. Discutiremos aquí los métodos más importantes, incluyendo las ventajas y limitaciones de estos.
La entrevista personal: los datos estadísticos necesarios para una investigación, se reúnen frecuentemente mediante un proceso que consiste en enviar un entrevistador o agente, directamente a la persona investigada. El investigador efectuará a esta persona una serie de preguntas previamente escritas en un cuestionario o boleta, donde anotará las respuestas correspondientes. Este procedimiento que se conoce con el nombre de entrevista personal, permite obtener una información más veraz y completa que la que proporcionan otros métodos, debido a que al tener contacto directo con la persona entrevistada, el entrevistador podrá aclarar cualquier duda que se presente sobre el cuestionario o investigación.
Otra ventaja es la posibilidad que tienen los entrevistadores de adaptar el lenguaje de las preguntas al nivel intelectual de las personas entrevistadas.
Una de las desventajas de este método se debe a que si el entrevistador no obra de buena fé o no tiene un entrenamiento adecuado, puede alterar las respuestas por las personas entrevistadas.
Otra desventaja es su alto costo, ya que resulta bastante oneroso el entrenamiento de los agentes o entrenadores y los supervisores de estos, sobre todo si se trata de una investigación extensa.
Cuestionarios por correo: consiste en enviar por correo el cuestionario acompañado por el instructivo necesario, dando en este no solo las instrucciones pertinentes para cada una de las preguntas, sino también una breve explicación del objeto de la encuesta con el fin de evitar interpretaciones erróneas.
Una de las ventajas es que tienen un costo muy inferior al anterior procedimiento, puesto que no hay que incluir gastos de entrenamiento de personal, el único gasto sería el de franqueo postal.
Dentro de las desventajas de este procedimiento podemos señalar que solo un porcentaje bastante bajo de estos es devuelto, en algunos casos no estamos seguros de que los formularios hayan sido recibidos por sus destinatarios y que hayan sido respondido por ellos mismos. Lo que trae como consecuencia que la información se obtenga con una serie de errores difíciles de precisar por el investigador.

Entrevista por teléfono: como lo indica su nombre, este método consiste en telefonear a la persona a entrevistar y hacerle una serie de preguntas. Este método es bastante simple y económico, ya que el entrenamiento y supervisión de las personas encargadas de efectuar las preguntas es siempre fácil.
Entre las limitaciones que presenta este método podemos señalar el número de preguntas que pueden formularse es relativamente limitado; además las investigaciones efectuadas por este método tienen un carácter selectivo, debido a que muchas de las personas que potencialmente podrían ser investigadas no posee servicio telefónico, por lo que quedan sin la posibilidad de ser entrevistados.
Instrumentos para la recolección de datos:
Cuestionarios:
Cualquiera que sea el método por el que se decida el investigador para recabar información, es necesario elaborar un estudio de preguntas.
Los cuestionarios en general, constan de las siguientes partes:
  1. La identificación del cuestionario: nombre del patrocinante de la encuesta, (oficial o privada), nombre de la encuesta, número del cuestionario, nombre del encuestador, lugar y fecha de la entrevista.
  2. Datos de identificación y de carácter social del encuestado: apellidos, nombres, cédula de identidad, nacionalidad, sexo, edad o fecha de nacimiento, estado civil, grado de instrucción, ocupación actual, ingresos, etc.
  3. Datos propios de la investigación, son los datos que interesa conocer para construir el propósito de la investigación.
Como es natural, estas partes, así como las preguntas, varían de acuerdo a la finalidad de la encuesta. En algunos tipos de investigación, la parte referente a los datos personales es eliminada por no tener ningún tipo de interés para el estudio.
Consideraciones que debemos tomar en cuenta:
  • El cuestionario debe ser conciso; tratar en los posible de que con el menor número de preguntas, se obtenga la mejor información.
  • Claridad de la redacción; evitar preguntas ambiguas o que sugieran respuestas incorrectas, por lo que deben estar formuladas las preguntas de la forma más sencilla.
  • Discreción: un cuestionario hecho a conciencia, no debe tener preguntas indiscretas o curiosas, sobre datos personales que puedan ofender al entrevistado.
  • Facilidad de contestación: se deben evitar, en lo posible, las preguntas de respuestas libres o abiertas y también la formulación de preguntas que requieran cálculos numéricos por parte del entrevistado.
  • Orden de las preguntas: estas deben tener una secuencia y un orden lógico, agruparlas procurando que se relacionen unas con otras.
Series o distribuciones estadísticas:
Anteriormente hemos señalado que la estadística, no se encarga del estudio de un hecho aislado, sino que tienen por objeto de los colectivos. Pues bien cuando se realiza una investigación se obtiene una masa de datos que deben ser organizados para disponerlos en un orden, arreglo o secuencia lógica, con el fin de facilitar el análisis de los mismos esta colección de datos numéricos obtenidos de la observación, que se clasifican y ordenan según un determinado criterio, se denominan "series estadísticas", también conocidas como "distribución estadística".
Clasificación de las series estadísticas:
  1. Ejemplo:
    Producción nacional de madera en Rola en m³
    Rollizos (periodo 1993 – 1998)
    Años
    Producción (m³ rollizos)
    1993
    1.161.061,454
    1994
    981.668,626
    1995
    1.087.926,142
    1996
    1.440.306,250
    1997
    1.618.075,000
    1998
    1.027.177,876
    Fuente: MARN – D.G.S Recurso Forestal. 1999
    CVG – PROFORCA
    Es importante resaltar que cuando se trata de series temporales o cronológicas, se debe especificar el instante o el periodo de tiempo a los que se refieren los caracteres en estudio.
    Cuando nos referimos a instantes de tiempo, por el hecho de que la observación se hace en un momento específico de tiempo.
    Ejemplo:
    Plantaciones forestales ejecutadas a nivel nacional, al 31 de diciembre de cada año entre 1997 – 2001.
  2. Series temporales o cronológicas; estas se definen como una masa o conjunto de datos producto de la observación de un fenómeno individual o colectivo, cuantificable en sucesivos instantes o periodos de tiempo.
  3. Series atemporales; cuando las observaciones de un fenómeno se hacen referidas al mismo instante o intervalo de tiempo, nos encontramos ente una serie atemporal. Aquí el tiempo no va incluido a cada observación, puesto que es el mismo tiempo para todas ellas. Este tipo de observación proporciona una "visión instantánea" de los fenómenos o caracteres de los componentes del colectivo en estudio.
Ejemplo:
Las notas de las participantes en la materia de estadística I en el periodo académico que terminó en septiembre del 2001.
2.1) series de frecuencia; cuando realizamos un estudio de cada uno de los elementos que componen la población o muestra bajo análisis, observamos que en general, hay un número de veces en que aparece repetido un mismo valor de una variable, o bien repeticiones de la misma modalidad de un atributo. Este número de repeticiones de un resultado, recibe el nombre de frecuencia absoluta o simplemente frecuencia.
El procedimiento mediante el cual se realiza el conteo, para así determinar el número de veces que cada dato se repite, recibe el nombre de tabulación.
Ejemplo:
Consideremos las edades de 20 niños, pertenecientes al Preescolar Blanca de Pérez, ubicado en la urbanización Monseñor Padilla
5
6
5
4
3
6
3
4
5
4
3
4
6
5
3
4
3
6
4
6
Tabulando los datos tenemos
Niños distribuidos por edades:
Edad (variable)
Nº de niños (Frecuencia)
3
5
4
6
5
4
6
5
Total =
20
Al agrupar los resultados de las observaciones en término de las veces que éstos se repiten, da lugar a las llamadas "series de frecuencias" o distribuciones de frecuencias; las cuales se dividen a su vez en series de frecuencia cualitativas y cuantitativas, según que los caracteres de estudio se refieran a atributos o variables respectivamente.
2.2.1) Series de frecuencia acumulativa: son comúnmente llamadas series de frecuencia de atributos o caracteres cualitativos y las formas de representar un atributo recibe el nombre de modalidades.
Cuando se observan y se obtienen los elementos que deseamos estudiar con respecto a un carácter de tipo cualitativo y se procede a agruparlos según las distintas modalidades que toma el atributo, "frecuencia cualitativa".
Ejemplo:
Agrupamos los resultados obtenidos al observar los 35 estudiantes de la materia estadística I, respecto a su estado civil.
Estudiantes de la materia Estadísticas I, clasificados por su estado civil.
Estado civil
Nº de Estudiantes (frecuencia)
Solteros
18
Casados
12
Viudos
1
Divorciados
4
2.1.2) Series de frecuencias cualitativas: es el resultado del agrupamiento de los valores que se repiten (frecuencia) al ser observada una variable.
Ejemplo:
Tomamos nuevamente los 35 estudiantes de la materia estadística I, respecto a su edad.
Edad (en años)
Nº de estudiantes (frecuencia)
19
12
20
2
25
8
28
6
32
4
42
3
Total =
35
EJEMPLO

VECTORES

 http://genesis.uag.mx/edmedia/material/fisica/vectores1.htm 
http://www.monografias.com/trabajos35/vectores/vectores.shtml
Definición de vectores
Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son:
Origen
O también denominado Punto de aplicación. Es el punto exacto sobre el que actúa el vector.
Módulo
Es la longitud o tamaño del vector. Para hallarla es preciso conocer el origen y el extremo del vector, pues para saber cuál es el módulo del vector, debemos medir desde su origen hasta su extremo.
Dirección
Viene dada por la orientación en el espacio de la recta que lo contiene.
Sentido
Se indica mediante una punta de flecha situada en el extremo del vector, indicando hacia qué lado de la línea de acción se dirige el vector.
Hay que tener muy en cuenta el sistema de referencia de los vectores, que estará formado por un origen y tres ejes perpendiculares. Este sistema de referencia permite fijar la posición de un punto cualquiera con exactitud.
El sistema de referencia que usaremos, como norma general, es el Sistema de Coordenadas Cartesianas.

Para poder representar cada vector en este sistema de coordenadas cartesianas, haremos uso de tres vectores unitarios. Estos vectores unitarios, son unidimensionales, esto es, tienen módulo 1, son perpendiculares entre sí y corresponderán a cada uno de los ejes del sistema de referencia.

Magnitudes Escalares
Denominamos Magnitudes Escalares a aquellas en las que las medidas quedan correctamente expresadas por medio de un número y la correspondiente unidad. Ejemplo de ello son las siguientes magnitudes, entre otras:
Masa
Temperatura
Presión
Densidad
Magnitudes vectoriales
Las magnitudes vectoriales son magnitudes que para estar determinadas precisan de un valor numérico, una dirección, un sentido y un punto de aplicación.
Vector
Un vector es la expresión que proporciona la medida de cualquier magnitud vectorial. Podemos considerarlo como un segmento orientado, en el que cabe distinguir:
  • Un origen o punto de aplicación: A.
  • Un extremo: B.
  • Una dirección: la de la recta que lo contiene.
  • Un sentido: indicado por la punta de flecha en B.
  • Un módulo, indicativo de la longitud del segmento AB.
Vectores iguales
Dos vectores son iguales cuando tienen el mismo módulo y la misma dirección.
Vector libre
Un vector libre queda caracterizado por su módulo, dirección y sentido. El vector libre es independiente del lugar en el que se encuentra.
Descomponiendo en un sistema de ejes cartesianos
a+b=(axi+ayj+ azk)+(bxi+byj+ bzk)=(ax+bx)i+(ay +by)j+(az+bz)k
Propiedades
Conmutativa: a+b=b+a
Asociativa: (a+b)+c=a+(b+c)
Elemento Neutro: a+0=a
Elemento Simétrico: a+(-a)=a-a=0
Vectores unitarios y componentes de un vector
Cualquier vector puede ser considerado como resultado de la suma de tres vectores, cada uno de ellos en la dirección de uno de los ejes coordenados.

Suma y resta de vectores
La suma de dos vectores libres es otro vector libre que se determina de la siguiente forma:
Se sitúa el punto de aplicación de uno de ellos sobre el extremo del otro; el vector suma es el vector que tiene su origen en el origen del primero y su extremo en el extremo del segundo.
Por tanto, el vector suma de dos vectores coincide con una de las diagonales, la "saliente", del paralelogramo que puede formarse con los vectores que se suman; la otra diagonal representa la resta de dichos vectores.
Para efectuar sumas o restas de tres o más vectores, el proceso es idéntico. Basta con aplicar la propiedad asociativa.
Al vector que se obtiene al sumar o restar varios vectores se le denomina resultante.
Suma de Vectores
La suma de los vectores podemos realizarla de dos maneras diferentes, analítica y gráficamente.
Procedimiento Gráfico
Para sumar dos vectores de manera gráfica utilizaremos la denominada Regla del paralelogramo, consistente en trasladar paralelamente los vectores hasta unirlos por el origen, y luego trazar un paralelogramo, del que obtendremos el resultado de la suma, como consecuencia de dibujar la diagonal de ese paralelogramo, como podemos ver en el siguiente dibujo:
Otra manera de expresar la suma de manera gráfica es trasladar el segundo vector a sumar de tal manera que el origen de éste, coincida con el extremo del primer vector, y la suma la obtendremos dibujando un vector que vaya desde el origen del primer vector hasta el extremo del segundo, de la siguiente manera:

Hay que tener muy presente lo siguiente: vectores en la misma dirección se suman (tal y como ya hemos visto en la sección de la suma de vectores), pero vectores con sentidos opuestos se restan (tal y como se puede ver en el apartado correspondiente a la resta de vectores). A continuación tenemos un ejemplo de suma y resta de vectores.
 
Método Algebraico para la Suma de vectores
Dados tres vectores


La expresión correspondiente al vector suma es:

o bien

siendo, por tanto,

La suma de vectores goza de las siguientes propiedades:
Conmutativa
a + b = b + a
Asociativa
(a + b) + c = a + (b + c)
Elemento neutro o vector 0
a + 0 = 0 + a = a
Elemento simétrico u opuesto a'
a + a' = a' + a = 0
a' = -a
Producto de un vector por un escalar
El resultado de multiplicar un escalar k por un vector v, expresado analíticamente por kv, es otro vector con las siguientes características :
1.- Tiene la misma dirección que v.
2.- Su sentido coincide con el de v, si k es un número positivo, y es el opuesto, si k es un número negativo.
3.- El módulo es k veces la longitud que representa el módulo de v. ( Si k es 0 el resultado es el vector nulo).
Analíticamente, tenemos que multiplicar el escalar por cada una de las coordenadas del vector.
Ejemplo : Dado el vector v de componentes : vxi + vyj + vzk, el producto 3 · v = 3 · vxi + 3 · vyj + 3 · vzk.
La representación gráfica del producto es igual a sumar el vector tantas veces como indica el escalar.
Ejemplo :
Propiedades
El producto de un vector por un escalar cumple las siguientes propiedades:

Producto escalar de dos vectores
El producto escalar de dos vectores, expresado analíticamente como r · v, se obtiene de la suma de los productos formados por las componentes de uno y otro vector. Es decir, dados dos vectores r y v, expresados en un mismo sistema de coordenadas:
r = rxi + ryj + rzk
v = vxi + vyj + vzk
teniendo en cuenta que el producto escalar de los vectores :
i · i = j · j = k · k = 1
i · j = i · k = j · k = 0
el resultado de multiplicar escalarmente r por v es:
r · v = rx· vx + ry · vy+ rz · vz
Esta operación no solo nos permite el cálculo de la longitud de los segmentos orientados que representan ( sus módulos ), sino también calcular el ángulo que hay entre ellos. Esto es posible, ya que el producto escalar también se puede hallar en función de sus módulos y del coseno del ángulo que forman mediante la fórmula :
r · v = |r| · |v| · cos (r, v)
Propiedades
Conmutativa : r · v = v · r
Distributiva : r · ( v + u ) = r · v + r · uAsociativa : ( k · r ) · v = k · ( r · v ) = r · ( k · v ) siendo k escalar.
Además :
1.- r · r = 0 si, y sólo sí r = 0.
2.- Si r y v <> 0 y r · v = 0, esto implica que los vectores son perpendiculares, (cos 90º = 0).
3.- El producto escalar de dos vectores es equivalente a multiplicar escalarmente uno de ellos por el vector proyección del otro sobre él.
Ejemplo :
Proyección ortogonal (rv) de r sobre v
rv= |r| cos (r, v) -> r · v = |v| · rv
Producto vectorial
El producto vectorial de los vectores a y b, se define como un vector, donde su dirección es perpendicular al plano de a y b, en el sentido del movimiento de un tornillo que gira hacia la derecha por el camino más corto de a a b,

donde n es un vector unitario perpendicular al plano de a y b en el sentido del movimiento de un tornillo que gira hacia la derecha de a a b.
Propiedades:

Módulo de un vector
Un vector no solo nos da una dirección y un sentido, sino también una magnitud, a esa magnitud se le denomina módulo.
Gráficamente: es la distancia que existe entre su origen y su extremo, y se representa por:
Coordenadas cartesianas: En muchas ocasiones es conveniente tomar las componentes sobre tres direcciones mutuamente perpendiculares OX, OY y OZ que forman un sistema cartesiano tridimensional.
Si tomamos tres vectores unitarios, i sobre OX, j sobre OY y k sobre OZ, entonces podemos encontrar puntos ax, ay, az sobre OX, OY, OZ, respectivamente, tales que:
y aplicando el teorema de Pitágoras nos encontramos con que el módulo de a es:
III. Ecuación De La Recta.
Ecuación de la Recta Que Pasa Por El Origen
Considere la recta l que pasa por el origen 0 y forma un ángulo de inclinación con el eje x

Tómese sobre la recta los puntos P1(x1, y1),P2 (x2, y2) y P3 (x3, y3). Al proyectar los puntos P1, P2 y P3 sobre el eje x, se obtienen los puntos P’1, P’2, P’3.
Como los triángulos OP1P’1, OP2P’2 y OP3P’3 son semejantes; se tiene que:
Esto es, cualquiera que sea el punto P(x, y) sobre l, ó y = mx (1)
La ecuación (1) es la ecuación de la recta que pasa por el origen y tiene pendiente conocida m.
Ecuación De La Recta Conocida Su Pendiente m Y Su Intercepto b Con El Eje y
Considere una recta l de la que se conocen m (m = tan ) y b
Trácese por el origen la recta l’ paralela a l. Sea P(x, y) un punto de l. Al  llamar P’ la proyección de P sobre el eje x; PP’ corta a la recta l’ en un punto P’’ de coordenadas

La ecuación y = mx + b es la ecuación de la recta en términos de su pendiente m y su intercepto b con el eje y.
Ecuación De La Recta Que Pasa Por Un Punto Y De Pendiente Conocida
Considere la recta l que pasa por un punto dado P1(x1, y1) y cuya pendiente m también es conocida
..
Al llamar b al intercepto de la recta l con el eje y, entonces la ecuación de l, viene dada por:
                y = mx + b             (1)
Como P1(x1, y1) , entonces satisface (1) y en consecuencia se tiene:
                 y1 = mx1 + b          (2)
Al restar de la ecuación (2) la ecuación (1) se elimina el parámetro b que se desconoce y se obtiene:
y – y1 = m(x – x1) (3)
La ecuación (3) es conocida como la forma: PUNTO-PENDIENTE de la ecuación de la recta.
Nótese que la ecuación (3) también puede escribirse en la forma:
y = mx + (y1 – mx1).
Lo que indica que él intercepto b con el eje y viene dado por:
b = y1 – mx1
Ecuación de la recta que pasa por dos puntos dados P1(x1, y1) y P2(x2, y2)
.. Sea l la recta que pasa por los puntos P1(x1, y1) y P2(x2, y2) y llámese m1 su pendiente
Como l pasa por el punto P1(x1, y1) y tiene pendiente m1, se tiene de acuerdo a 4.4.3, que
                           y – y1 = m1 (x – x1)    (1)
representa la ecuación de dicha recta.
Ahora, como el punto P2(x2, y2) , entonces satisface su ecuación

La ecuación (3) se conoce como la forma: DOS-PUNTOS de la ecuación de la recta.
Ecuación segmentaría de la línea recta
Considere la recta l de la cual conocemos los interceptó a y b con los ejes x e y respectivamente
Como l pasa por los puntos A(a, 0) y B(0, b), entonces de acuerdo a la sección la ecuación de l viene dada por:

Dividiendo esta última ecuación por b, se obtiene:

La ecuación (1) se conoce como la ecuación SEGMENTARIA, CANÓNICA O FORMA DE LOS INTERCEPTOS de la línea recta. Los números a y b son las medidas de los segmentos que la recta intercepta con cada eje, con su signo correspondiente, pues haciendo en (1)
y = 0, resulta x = a (Intercepto con el eje x)
x = 0, resulta x = b (Intercepto con el eje y)
Ecuación general de la línea recta
.... La ecuación Ax + By +C = 0 donde A, B, C son números reales y A, B no son simultáneamente nulos, se conoce como la ECUACIÓN GENERAL de primer grado en las variables x e y. 
..La ecuación explícita de la recta cuando se conocen dos puntos excluye las rectas paralelas al eje y, cuyas ecuaciones son de la forma x = constante, pero todas las rectas del plano, sin excepción, quedan incluidas en la ecuación Ax + By + C = 0 que se conoce como: la ecuación general de la línea recta, como lo afirma el siguiente teorema
TEOREMA
La ecuación general de primer grado Ax + By + C = 0 (1) , R; A y B no son simultáneamente nulos, representan una línea recta.

Demostración
 i.   Se puede Considerar varios casos:
A = 0, B diferente de 0.
       En este caso, la ecuación (1) se transforma en By + C = 0,0de donde


La ecuación (2) representa una línea recta paralela al eje x y cuyo intercepto con el eje y es 
ii. En este caso, la ecuación (1) se transforma en Ax + C = 0, de donde

La ecuación (3) representa una línea recta paralela al eje y y cuyo intercepto con el eje x es 
iii. En este caso, la ecuación (1) puede escribirse en la siguiente forma:


La ecuación (4) representa una línea recta, cuya pendiente es  y cuyo intercepto con el eje y viene dado por 
observaciones

    i.   Es posible escribir la ecuación general de la línea recta en varias formas, de tal
         manera que solo involucre dos constantes. Es decir, si A, B y C son todos distintos
         de cero, podemos escribir la ecuación (1), en las siguientes formas equivalentes:
    
En cada una de las ecuaciones (1A), (1B) y (1C) existe esencialmente solo dos

        constantes independientes, por ejemplo  en (1A)

Esto indica que para determinar la ecuación de una recta en particular, necesitamos conocer dos condiciones, como por ejemplo, dos puntos, un punto y la pendiente, en concordancia con lo establecido en los numerales anteriores.
iii.   Cuando la ecuación de una recta esta expresada en la forma general
          Ax + By + C = 0, su pendiente ó coeficiente angular con respecto al eje x, m
         viene dado por y su coeficiente angular n, con respecto al eje y

         viene dado por  .
    
   Los coeficientes A y B se denominan coeficientes directores de la recta.
IV. Historia del Cálculo
          DE CÓMO SE GESTÓ Y VINO AL MUNDO EL CÁLCULO INFINITESIMAL
N e w t o n               L e i b n i z
( 1 642 - 1 727 )           ( 1 646 - 1 716)
     Del legado de las matemáticas, el cálculo infinitesimal es, sin duda, la herramienta más potente y eficaz para el estudio de la naturaleza. El cálculo infinitesimal tiene dos caras: diferencial e integral; y un oscuro interior donde, como demonios, moran los infinitos: grandes y pequeños. Los orígenes del cálculo integral se remontan, como no, al mundo griego; concretamente a los cálculos de áreas y volúmenes que Arquímedes realizó en el siglo III a.C. Aunque hubo que esperar mucho tiempo, hasta el siglo XVII, ¡2000 años!, para que apareciera -o mejor, como Platón afirmaría, para que se descubriera- el cálculo. Varias son las causas de semejante retraso.
Entre ellas debemos destacar la inexistencia de un sistema de numeración adecuado -en este caso el decimal- así como del desarrollo del álgebra simbólica y la geometría analítica que permitieron el tratamiento algebraico -y no geométrico- de las curvas posibilitando enormemente los cálculos de tangentes, cuadraturas, máximos y mínimos, entre otros. Todo ello ocurrió principalmente en el siglo XVII.
Resultado de imagen para vectores fisica
Ya los griegos se habían preocupado de como tratar ese ente tan curioso -como difícil- que es el infinito. Para los griegos el infinito aparece de dos maneras distintas: lo infinitamente pequeño y lo infinitamente grande. Ya se vislumbra de algún modo en la inconmensurabilidad de la diagonal del cuadrado; también, claro está, lo tenemos en la famosa paradoja de Zenón sobre Aquiles y la tortuga, por ello no es de extrañar que alguien intentara regularlos.
Ese alguien fue Aristóteles. Lo que hizo fue prohibir el infinito en acto "no es posible que el infinito exista como ser en acto o como una substancia y un principio", escribió, pero añadió "es claro que la negación absoluta del infinito es una hipótesis que conduce a consecuencias imposibles" de manera que el infinito "existe potencialmente [...] es por adición o división". Así, la regulación aristotélica del infinito no permite considerar un segmento como una colección de puntos alineados pero sí permite dividir este segmento por la mitad tantas veces como queramos. Fue Eudoxio, discípulo de Platón y contemporáneo  de Aristóteles quien hizo el primer uso "racional" del infinito en las matemáticas. Eudoxio postuló que "toda magnitud finita puede ser agotada mediante la substracción de una cantidad determinada". Es el famoso principio de Arquímedes que éste toma prestado a Eudoxio y que sirvió a aquél para superar la primera crisis de las Matemáticas -debida al descubrimiento de los irracionales-.
No obstante, fue Arquímedes el precursor del cálculo integral aunque desgraciadamente su método se perdió y por tanto no tuvo ninguna repercusión en el descubrimiento del cálculo -recordemos que su original método "mecánico" donde además se saltaba la prohibición aristotélica de usar el infinito in acto se perdió y solo fue recuperado en 1906 ... La genial idea del siracusano fue considerar las áreas como una colección -necesariamente infinita- de segmentos. Habrá que esperar 2000 años hasta que otro matemático -en este caso Cavalieri- volviera a usar de esa manera los infinitos. De hecho Leibniz descubrió la clave de su cálculo al ver un trabajo de Pascal donde éste usaba un método semejante.
      La necesidad de entender obras griegas difíciles como las de Arquímedes tuvo gran influencia en el nacimiento del cálculo. -ya en el siglo XVII se habían recuperado y se dominaban la mayoría de las obras griegas.
También ayudó al surgimiento del cálculo el cambio de actitud en la matemática del siglo XVII quizá influenciada por los grandes descubrimientos de todo tipo -geográficos, científicos, médicos y tecnológicos- que fue el interés de los matemáticos por descubrir más que por dar pruebas rigurosas. Ello potenció sin duda el uso del infinito sin las limitaciones aristotélicas. Y finalmente, el descubrimiento de la Geometría analítica de Descartes y Fermat.
La primera parte del siglo XVII vio el nacimiento de la geometría analítica de Fermat y Descartes. La importancia de este descubrimiento consiste en que la geometría analítica permite el tratamiento algebraico de problemas geométricos, al asignar a las curvas, superficies, etc. fórmulas algebraicas que las describen y permiten su manipulación analítica. De esta forma encontrar tangentes, por ejemplo, se hacía extremadamente sencillo -basta saber calcular las derivadas como ahora sabemos- frente a los engorrosos, y específicos para cada curva,  procedimientos geométricos.
      Como ya mencionamos, en el siglo XVII los matemáticos perdieron el miedo  a los infinitos que los griegos les habían tenido: Kepler y Cavalieri fueron los primeros en usarlos, empezaron a andar un camino que llevaría en medio siglo al descubrimiento del cálculo infinitesimal. El primer paso importante se debe a Cavalieri -discípulo de Galileo-. Cavalieri considera áreas formadas por segmentos y volúmenes formados por trozos de áreas planas redescubriendo las bases metodológicas del método mecánico -y desconocido en aquella época- de Arquímedes. Cavalieri incluso fue más allá intentando construir una teoría de indivisibles que le permitiera, evitando los infinitos, demostrar rigurosamente sus resultados -cosa que no consiguió ya que el infinito en acto siempre acababa apareciendo en alguna parte-.  Las desventajas de su método de indivisibles -poca generalidad, debilidad lógica, excesivos razonamientos y procedimientos geométricos- fueron rápidamente superados por Torricelli, Fermat, Pascal, Wallis y Roberval.
Resultado de imagen para vectores fisica
Otro de los protagonistas de nuestra historia es, sin duda, Grégoire de Saint-Vicent, jesuita discípulo de Clavius. Sus principales aportaciones las publicó en su Opus geometricum. En ella desarrolla un método de integración geométrico, estudia las series geométricas incluyendo diversas aplicaciones de las mismas discutiendo, como no, la conocida aporía de Zenón sobre Aquiles y la tortuga que además resolvía magistralmente argumentando que Zenón no consideró en la persecución de Aquiles que el tiempo formaba una progresión geométrica de razón 1/2 y por tanto tardaba un tiempo finito en alcanzar a la tortuga. Una de las aportaciones más valiosas de Saint-Vicent consistió en su hallazgo de que el área encerrada bajo una hipérbola se expresaba mediante los logaritmos.
Nuestro próximo personaje es John Wallis, miembro fundador de la Royal Society de Londres y editor de obras de Arquímedes que además escribió una Gramática inglesa. Wallis aritmetizó los indivisibles de Cavalieri asignándoles valores numéricos convirtiendo de esta forma el cálculo de áreas -hasta el momento algo meramente geométrico- en cálculos aritméticos más un primitivo proceso de límite haciendo además un uso "descarado" del infinito -a él debemos también el símbolo que usamos actualmente, ese 8 acostado-.
Es curiosa la opinión que él mismo profesaba de sus métodos: "Este procedimiento es altamente heterodoxo, pero puede verificarse mediante el bien conocido método de figuras inscritas y circunscritas, lo que es superfluo, porque la frecuente iteración produce náuseas al lector. Cualquier ducho en la materia puede realizar la prueba", escribió en su Arithmetica infinitorum. Usando su método aritmético, la inducción incompleta,  y su intuición llegó a calcular el área de todas las parábolas generalizadas x ^ r con r racional excluyendo al 1, además de una bellísima fórmula para calcular Pi.
El trabajo de Wallis influyó enormemente en Newton quien aseguró que el desarrollo del binomio y otras ideas iniciales sobre el cálculo se originaron en su estudio del libro de Wallis en la época de estudiante en Cambridge.
El mismo Wallis propone una genealogía del cálculo:
Método de exhausión (Arquímedes)
Método de los indivisibles (Cavalieri)
Aritmética de los infinitos (Wallis)
Métodos de las series infinitas (Newton)
     Dediquemos algún tiempo a comentar los métodos infinitesimales relacionados con el cálculo de tangentes, que junto al de áreas constituyeron la base del cálculo. En la parte central del siglo XVII, las cantidades infinitesimales, los fantasmas de cantidades desaparecidas, como alguien las llamó en el siglo XVIII, fueron cada vez más usadas para resolver problemas de cálculos de tangentes, áreas, volúmenes, etc.; los primeros darían origen al cálculo diferencial, los otros al integral.  Como hemos mencionado Saint Vincent, Pascal, Wallis, ... siguieron los pasos de Kepler y Cavalieri; además de los infinitésimos cada vez se usaban más fórmulas y menos dibujos: la geometría analítica cumplía su función de puente entre la geometría y el análisis. Si Isaac Barrow, el maestro de Newton en Cambridge la hubiera estudiado bien, podría haber arrebatado a su discípulo el descubrimiento del cálculo. En efecto, la geometría analítica amplió considerablemente el horizonte de las curvas geométricas. Este incremento de nuevas curvas hizo imprescindible el desarrollar nuevos métodos para calcular tangentes.  Uno de ellos fue el método de adigualdades de Pierre Fermat que servía además para calcular máximos y mínimos. Esto unido a sus trabajos sobre cuadraturas le hacen merecedor a un puesto de honor como precursor del cálculo. Newton, en una carta descubierta en 1934, escribió en relación con sus ideas para el desarrollo del cálculo: "La indicación me la dio el método de Fermat para las tangentes. Aplicándolo a las ecuaciones abstractas directa e inversamente, yo lo hice general".
Relacionado con los problemas de tangentes surgió a mediados del S.XVII el llamado problema inverso de tangentes, es decir, deducir una curva a partir de las propiedades de sus tangentes. El primero en plantear un problema de este tipo fue Florimond de Beaune, discípulo de Descartes, quien planteó, entre otros, el problema de encontrar la curva con subtangente constante. El propio Descartes lo intentó sin éxito siendo Leibniz el primero en resolverlo en la primera publicación de la "historia sobre el cálculo infinitesimal". De hecho un elemento esencial para el descubrimiento del cálculo fue el reconocimiento de que el problema de las tangentes y las cuadraturas eran problemas inversos; es por eso que la relación inversa entre la derivación y la integración es lo que hoy llamamos Teorema fundamental del cálculo.
     Newton en su célebre frase "Si he llegado a ver más lejos que otros es por que me subí en hombros de gigantes" se refiere entre otros a su maestro y mentor Isaac Barrow. Barrow fue probablemente el científico que estuvo más cerca de descubrir el cálculo. Llegó a las matemáticas en su afán de comprender la teología -de hecho se marchó de su cátedra en Cambridge, cediéndosela a Newton para continuar sus estudios teológicos-. En la lección X de su obra Letiones opticae & geometricae Barrow demuestra su versión geométrica del Teorema fundamental del cálculo.
       En el último cuarto del siglo XVII, Newton  y Leibniz, de manera independiente, sintetizaron de la maraña de métodos infinitesimales usados por sus predecesores dos conceptos, los que hoy llamamos la derivada y la integral, desarrollaron unas reglas para manipular la derivada -reglas de derivación- y mostraron que ambos conceptos eran inversos- Teorema fundamental del cálculo-: acababa de nacer el cálculo infinitesimal. Para resolver todos los problemas de cuadraturas, máximos y mínimos, tangentes, centros de gravedad, etc. que habían ocupado a sus predecesores bastaba echar a andar estos dos conceptos mediante sus correspondientes reglas de cálculo.
El primero en descubrirlo fue Newton, pero su fobia por publicar le hizo guardar casi en secreto su descubrimiento. Newton gestó el cálculo en sus anni mirabilis (1665-1666) cuando se refugiaba en su casa materna de la epidemia de peste que asolaba Inglaterra. De hecho su primera obra  sobre el cálculo, De analyse per aequationes numero terminorum infinitas -que le valió la cátedra lucasiana que dejó su maestro Barrow- fue finalizada en 1669 aunque sólo la publicó en 1711. La segunda obra de Newton sobre el cálculo fue escrita dos años más tarde en 1671 pero esperaría hasta 1737 para ver la luz !diez años después de su muerte y 66 después de escrita!. Se trata de De methodis serierum et fluxionum.
Resultado de imagen para vectores fisica
En ella Newton describe sus conceptos de fluente -es una variable en función del tiempo- y fluxión de la fluente -la derivada respecto al tiempo de la fluente- como entidades propias, con unas reglas algorítmicas de fácil uso que luego usará para resolver distintos problemas de máximos y mínimos, tangentes, cuadraturas -en relación a este último, estableció el ya mencionado Teorema fundamental del cálculo-. Para demostrar la potencia de su cálculo Newton se dedica en unas "pocas" páginas a resolver todos los problemas de cálculo de tangentes, áreas, etc. que habían ocupado a sus predecesores.
Una pregunta que casi inmediatamente aflora en la mente es ¿por qué Newton tardó tanto en publicar sus resultados? A parte de su peculiar personalidad y las distintas disputas que tuvo con muchos de sus contemporáneos, Newton era consciente de la débil fundamentación lógica de su método de cálculo de fluxiones -no obstante siempre hubo copias de sus trabajos circulando entre sus amigos-.
Este temor también está patente en su obra cumbre: Los Principia, donde optó por un lenguaje geométrico más riguroso -y oscuro- eliminando todo indicio de su cálculo que probablemente usó -se puede encontrar una única mención del mismo en el lema II de la sección II del libro II: la regla para derivar productos-.

     Leibniz, más conocido como filósofo, fue el otro inventor del cálculo. Su descubrimiento fue posterior al de Newton, aunque Leibniz fue el primero en publicar el invento. Lo hizo además usando una vía ciertamente novedosa en aquella época: para facilitar la difusión de sus resultados los publicó en una de las recién creadas revistas científico filosóficas, el Acta Eroditorum, que el mismo había ayudado a fundar -eran ciertamente momentos importantes para la ciencia donde empezaron a aparecer las revistas científicas que permitirían luego y hasta nuestro días la difusión del conocimiento y los descubrimientos científicos-. Durante una estancia en París -ya que era un afamado diplomático- Leibniz conoce a Huygens quien le induce a estudiar matemáticas.
En 1673, luego de estudiar los tratados de Pascal, Leibniz se convence que los problemas inversos de tangentes y los de cuadraturas eran equivalentes. Alejándose de estos problemas, a partir de sumas y diferencias de sucesiones comienza a desarrollar toda una teoría de sumas y diferencias infinitesimales que acabarían en la gestación de su cálculo por el año 1680 y a diferencia de Newton si lo publica en las mencionadas Actas con el título "Un nuevo método para los máximos y los mínimos, así como para las tangentes, que no se detiene ante cantidades fraccionarias o irracionales, y es un singular género de cálculo para estos problemas". En este artículo de 6 páginas -e incomprensible como él mismo luego reconoce- Leibniz recoge de manera esquemática sin demostraciones y sin ejemplos su cálculo diferencial -"un enigma más que una explicación" dijeron de él los hermanos Bernoulli.
Resultado de imagen para vectores fisica
También Leibniz resuelve el ya mencionado problema de De Beaune encontrando que la solución era el logaritmo. El siguiente artículo de Leibniz se llamó "Sobre una geometría altamente oculta y el análisis de los indivisibles e infinitos", también publicado en las Actas Eroditorum en 1686. En él aparece por primera vez la notación para la integral que todavía hoy usamos -en el primero introduce la notación "dx" para la diferencial-.
     Como colofón a estas páginas dedicaremos unas líneas a tratar la mayor de todas las disputas que ha conocido la ciencia: la prioridad de la invención del cálculo. Las suspicacias entre Newton y Leibniz y sus respectivos seguidores, primero sobre quién había descubierto antes el cálculo y, después, sobre si uno lo había copiado del otro, acabaron estallando en un conflicto de prioridad que amargó los últimos años de ambos genios. Para comenzar diremos que la disputa fue evitable pues los métodos de ambos genios tienen importantes diferencias conceptuales que indican claramente la génesis independiente de los mismos. Newton consideraba las curvas generadas por el movimiento continuo de un punto basándose su cálculo diferencial en la medida de la variación de la misma -de su fluir- mientras que Leibniz consideraba una curva como formada por segmentos de longitud infinitesimal cuya prolongación generaba la tangente en cada punto y de cuya geometría se obtiene la correspondiente relación entre las diferenciales. Incluso la fundamentación de ambos métodos es totalmente distinta. Si el de Newton fue resuelto totalmente mediante el concepto de límite, el de Leibniz tuvo que esperar hasta la década 1960-70 hasta la aparición del Análisis no-estándard de Abrahan Robinson.
La polémica en cuestión se fraguó a finales del siglo XVII: por un lado Leibniz no había hecho ninguna alusión al cálculo infinitesimal de Newton -que el mismo Newton le había indicado que existía en sus Epistolae : Expistola prior  y posterior, sendas cartas dirigidas a Leibniz. En ambas Newton explica muy someramente -básicamente se centra en el teorema del binomio- su método de cálculo.- Además en Holanda -como le aseguró Wallis a Newton- se atribuía el cálculo a Leibniz, eso sin contar que los discípulos de Leibniz habían publicado el primer libro sobre el cálculo: el Analyse des infiniment petits que redactó el Marquéz de L'Hospital a partir de las clases particulares que le dio Juan Bernoulli.
 Resultado de imagen para vectores fisica
La respuesta de los seguidores de Newton no se hace esperar. Primero el propio Newton hace publicar en el tercer volumen de las obras matemáticas de Wallis la correspondencia cursada con Leibniz, las Epistolas prior y posterior donde éste pedía a Newton le enviase resultados sobre series, luego Fatio de Duillier, amigo de Newton, acusa a Leibniz de haber plagiado a Newton y como no, en su ya mencionada De quadratura curvarum, Newton alega "En una carta escrita al Sr. Leibniz en 1676 y publicada por Wallis, mencionaba un método por el cual había encontrado algunos teoremas generales acerca de la cuadratura de figuras curvilíneas [...] Hace años presté un manuscrito conteniendo tales teoremas; y habiéndome encontrado desde entonces con varias cosas copiadas de él, lo hago público en esta ocasión". La respuesta de Leibniz no se hizo esperar.
En una reseña del De quadratura curvarum, publicada anónimamente -aunque era fácil reconocer a su autor: Leibniz - en 1705 en las Actas se dice "Para entender mejor este libro los siguientes hechos deben ser conocidos. Cuando una cantidad varía continuamente como, por ejemplo, una línea varía por el fluir de un punto que la describe, aquellos incrementos momentáneos son llamados diferencias [...] Y por tanto ha aparecido el cálculo diferencial y su converso, el cálculo sumatorio. Los elementos de este cálculo han sido publicados por su inventor el Dr. Gottfried Wilhelm Leibniz en estas Actas, y sus varios usos han sido mostrados por él y por los Drs. y hermanos Bernoulli y por el Dr. Marquéz de L'Hospital. En vez de las diferencias leibnizianas, el Dr. Newton empleó, y ha empleado siempre, fluxiones". Esta reseña fue el detonante del mayor ataque contra Leibniz desde las Philosophical Transactions firmado por John Keill quien acusa abiertamente a Leibniz de plagio. Tras la protesta de Leibniz la Royal Society nombra una comisión -que resultó estar plagada de amigos de Newton - que luego de varias deliberaciones dictaminó que Newton fue el primero y no acusó a Leibniz - aunque tampoco rectificó las duras palabras de Keill-. Esta absurda guerra duró hasta principios del siglo XIX cuando finalmente los matemáticos ingleses deciden adoptar la notación leibniziana, que hasta el momento habían ignorado.



     Como apéndice a nuestra exposición vamos a relatar, a modo de realzar la gran potencia del cálculo, uno de los problemas que se resolvió gracias a la nueva herramienta descubierta por Newton y Leibniz: el problema de la braquistocrona. El problema consistía en determinar la curva por la que un cuerpo desciende en el menor tiempo posible entre dos puntos que no estén en posición vertical u horizontal. Este problema ya interesó en su día a Galileo aunque éste fue incapaz de resolverlo -lo cual no es raro pues para ello se precisaba del cálculo-. La historia es como sigue.
En el número de junio de 1696 de las Actas Eroditorum, Juan Bernoulli lanzó un reto a los mejores matemáticos del mundo. En realidad era un reto encubierto a Newton. Al cabo del año -el plazo original fue de seis meses pero a petición de Leibniz se amplió para que tuvieran tiempo los matemáticos franceses e italianos que se habían enterado tarde- aparecieron cinco soluciones: una de Leibniz,  una del mismo Juan Bernoulli, otra de su hermano Jacobo Bernoulli, una del Marquéz de L'Hospital y una anónima. Todas, excepto la de L'Hospital daban con la solución: la cicloide. ¿Quién era ese autor anónimo que escogió las Philosophical Transactions para publicar su genial solución que sólo contenía 67 palabras?. Un vistazo a la solución fue suficiente para que Juan Bernoulli exclamara "tanquam ex ungue leonen", algo así como "¡reconozco al león por sus garras!" pues claro está que era Newton. Años más tarde se aclaró toda la historia. Como ya dijimos el reto estaba dirigido a los matemáticos ingleses y a Newton en particular justo en el momento en que comenzaba la polémica sobre la prioridad para ver si el cálculo de Newton era tan bueno y poderoso para resolverlo. Además, en una carta de Leibniz a Juan Bernoulli éste conjetura que sólo quien conozca el cálculo podrá resolverlo -Newton entre ellos claro está-. Como no podía ser de otra forma el reto llegó a Newton aunque por aquel entonces ya no "hacía ciencia" sino que trabajaba en la Casa de la Moneda inglesa. Según cuenta la sobrina de Newton, este recibió el problema a las 4 de la tarde cuando regresó cansado de la Casa de la Moneda y tenía lista su solución 12 horas después -aunque lo que probablemente no sabía la sobrina era que Newton ya había pensado en ese problema unos años antes y que casi seguro lo había resuelto por lo que sólo tuvo que refrescar la memoria ese día-. Nuevamente aparece la misma pregunta: Si Newton ya había resuelto el problema ¿por qué no lo publicó? Como respuesta final a esta pregunta tomaremos la que dió Augusto de Morgan "Cada descubrimiento de Newton tenía dos aspectos. Newton tuvo que hacerlo y, luego, los demás teníamos que descubrir que él lo había hecho"
 Resultado de imagen para vectores fisica
V. Definición del calculo vectorial
El cálculo vectorial es un campo de las matemáticas referidas al análisis real multivariable de vectores en 2 o más dimensiones. Consiste en una serie de fórmulas y técnicas para solucionar problemas muy útiles para la ingeniería y la física.
Consideramos los campos vectoriales, que asocian un vector a cada punto en el espacio, y campos escalares, que asocian un escalar a cada punto en el espacio. Por ejemplo, la temperatura de una piscina es un campo escalar: a cada punto asociamos un valor escalar de temperatura. El flujo del agua en la misma piscina es un campo vectorial: a cada punto asociamos un vector de velocidad.
Cuatro operaciones son importantes en el cálculo vectorial:
  • Gradiente: mide la tasa y la dirección del cambio en un campo escalar; el gradiente de un campo escalar es un campo vectorial.
  • Rotor o rotacional: mide la tendencia de un campo vectorial a rotar alrededor de un punto; el rotor de un campo vectorial es otro campo (seudo)vectorial.
  • Divergencia: mide la tendencia de un campo vectorial a originarse en o a converger hacia ciertos puntos; la divergencia de un campo vectorial es un campo escalar.
  • Laplaciano
La mayoría de los resultados analíticos se entienden más fácilmente usando la maquinaria de la geometría diferencial, de la cual el cálculo vectorial forma un subconjunto.